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TO THE INSTRUCTOR       
 
 
As indicated in its preface, Vector Mechanics 
for Engineers: Dynamics is designed for a first 
course in dynamics. New concepts have, 
therefore, been presented in simple terms and 
every step has been explained in detail. 
However, because of the large number of 
optional sections which have been included and 
the maturity of approach which has been 
achieved, this text can also be used to teach a 
course which will challenge the more advanced 
student. 
 
The text has been divided into units, each 
corresponding to a well-defined topic and 
consisting of one or several theory sections, one 
or several Sample Problems, a section entitled 
Solving Problems on Your Own, and a large 
number of problems to be assigned. To assist 
instructors in making up schedules of 
assignments that will best fit their classes, the 
various topics covered in the text have been 
listed in Table I and a suggested number of 
periods to be spent on each topic has been 
indicated. Both a minimum and a maximum 
number of periods have been suggested, and the 
topics which form the standard basic course in 
dynamics have been separated from those 
which are optional. The total number of periods 
required to teach the basic material varies from 
27 to 48, while covering the entire text would 
require from 40 to 67 periods. In most 
instances, of course, the instructor will want to 
include some, but not all, of the additional 
material presented in the text. If allowance is 
made for the time spent for review and exams, 
it is seen that this text is equally suitable for 
teaching the standard basic dynamics course in 
40 to 45 periods and for teaching a more 
complete dynamics course to advanced 
students. In addition, it should be noted that 
Statics and Dynamics can be used together to 
teach a combined 4- or 5-credit-hour course 
covering all the essential topics in dynamics as 

well as those sections of statics which are 
prerequisites to the study of dynamics. 
 
The problems have been grouped according to 
the portions of material they illustrate and have 
been arranged in order of increasing difficulty, 
with problems requiring special attention 
indicated by asterisks. We note that, in most 
cases, problems have been arranged in groups 
of six or more, all problems of the same group 
being closely related. This means that 
instructors will easily find additional problems 
to amplify a particular point which they may 
have brought up in discussing a problem 
assigned for homework. A group of seven 
problems designed to be solved with 
computational software can be found at the end 
of each chapter. Solutions for these problems, 
including analyses of the problems and problem 
solutions and output for the most widely used 
computational programs, are provided at the 
instructor’s edition of the text’s website: 
http://www.mhhe.com/beerjohnston7. 
 
To assist in the preparation of homework 
assignments, Table II provides a brief 
description of all groups of problems and a 
classification of the problems in each group 
according to the units used. It should also be 
noted that the answers to all problems are given 
at the end of the text, except for those with a 
number in italic. Because of the large number 
of problems available in both systems of units, 
the instructor has the choice of assigning 
problems using SI units and problems using 
U.S. customary units in whatever proportion is 
found to be desirable. To illustrate this point, 
sample lesson schedules are shown in Tables III 
and IV, together with various alternative lists of 
assigned problems. Half of the problems in each 
of the six lists suggested in Table III are stated 
in SI units and half in U.S. customary units. On 
the other hand, 75% of the problems in the four 
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lists suggested in Table IV are stated in SI units 
and 25% in U.S. customary units. 
 
Because the approach used in this text differs in 
a number of respects from the approach used in 
other books, instructors will be well advised to 
read the preface to Vector Mechanics for 
Engineers, in which the authors have outlined 
their general philosophy. In addition, instructors 
will find in the following pages a description, 
chapter by chapter, of the more significant 
features of this text. It is hoped that this 

material will help instructors in organizing their 
courses to best fit the needs of their students. 
The authors wish to acknowledge and thank       
Professor Dean P. Updike of Lehigh University, 
Professor Gerald E. Rehkugler of Cornell 
University, Professor Petru Petrina of Cornell 
University, and Professor Richard H. Lance of 
Cornell University for their careful preparation 
of the solutions contained in this manual. 
 
 Ferdinand P. Beer 
 E. Russell Johnston, Jr. 
                                    William E. Clausen
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DESCRIPTION OF THE MATERIAL CONTAINED IN 

VECTOR MECHANICS FOR ENGINEERS: DYNAMICS, Seventh Edition  
 
 
     

Chapter 11 
Kinematics of Particles 

 
In this chapter, the motion of bodies is studied 
without regard to their size; all bodies are 
assumed to reduce to single particles. The 
analysis of the effect of the size of a body and 
the study of the relative motion of the various 
particles forming a given body are postponed 
until Chap. 15. In order to present the simpler 
topics first, Chap. 11 has been divided into two 
parts: rectilinear motion of particles, and 
curvilinear motion of particles. 
 
In Sec. 11.2, position, velocity, and acceleration 
are defined for a particle in rectilinear motion. 
They are defined as quantities which may be 
either positive or negative and students should 
be warned not to confuse position coordinate 
and distance traveled, or velocity and speed. 
The significance of positive and negative 
acceleration should be stressed. Negative 
acceleration may indicate a loss in speed in the 
positive direction or a gain in speed in the 
negative direction. 
 
As they begin the study of dynamics, many 
students are under the belief that the motion of 
a particle must be either uniform or uniformly 
accelerated. To destroy this misconception, the 
motion of a particle is first described under very 
general conditions, assuming a variable 
acceleration which may depend upon the time, 
the position, or the velocity of the particle (Sec. 
11.3).  To facilitate the handling of the initial 
conditions, definite integrals, rather than 
indefinite integrals, are used in the integration 
of the equations of motion. 
 
The special equations relating to uniform and 
uniformly accelerated motion are derived in  

 
Secs. 11.4 and 11.5.  Students should be warned 
to check carefully, before using these equations, 
that the motion under consideration is actually a 
uniform or a uniformly accelerated motion. 
 
Two important concepts are introduced in Sec. 
11.6: (1) the concept of relative motion, which 
will be developed further in Sees.  11.12 and 
15.5, (2) the concept of dependent motions and 
degrees of freedom. 
 
The first part of Chap. 11 ends with the 
presentation of several graphical methods of 
solution of rectilinear-motion problems (Secs. 
11.7 and 11.8). This material is optional and 
may be omitted. Several problems in which the 
data are given in graphical form have been 
included (cf. pp. 638-640 of the text.) 
 
The second part of the chapter begins with the 
introduction of the vectors defining the 
position, velocity and acceleration of a particle 
in curvilinear motion. The derivative of a vector 
function is defined and introduced at this point 
(Sec. 11.10). The motion of a particle is first 
studied in terms of rectangular components 
(Sec. 11.11); it is shown that in many cases (for 
example, projectiles) the study of curvilinear 
motion can be reduced to that of two 
independent rectilinear motions. The concept of 
fixed and moving frames of reference is 
introduced in Sec. 11.12 and is immediately 
used to treat the relative motion of particles. 
 
The use of tangential and normal components, 
and of radial and transverse components is 
discussed in Secs. 11.13 and 11.14. Each 
system of components is first introduced in two 
dimensions and then extended to include three-
dimensional space. 
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Chapter 12 
Kinetics of Particles: 

Newton's Second Law 
 
As indicated earlier, this chapter and the 
following two are concerned only with the 
kinetics of particles and systems of particles. 
They neglect the effect of the size of the bodies 
considered and ignore the rotation of the bodies 
about their mass center. The effect of size will 
be taken into account in Chaps. 16 through 18, 
which deal with the kinetics of rigid bodies. 
 
Sec. 12.2 presents Newton's second law of 
motion and introduces the concept of a 
newtonian frame of reference. In Sec. 12.3 the 
concept of linear momentum of a particle is 
introduced, and Newton's second law is 
expressed in its alternative form, which states 
that the resultant of the forces acting on a 
particle is equal to the rate of change of the 
linear momentum of the particle.  Section 12.4 
reviews the two systems of units used in this 
text, the SI metric units and the U.S. customary 
units, which were previously discussed in Sec. 
1.3. This section also emphasizes the difference 
between an absolute and a gravitational system 
of units. 
 
A number of problems with two degrees of 
freedom have been included (Problems 12.28 
through 12.33), some of which require a careful 
analysis of the accelerations involved (see 
Sample Problem 12.4). 
 
Section 12.5 applies Newton's second law to 
the study of the motion of a particle in terms of 
rectangular components and tangential and 
normal components. In Sec. 12.6, dynamic 
equilibrium is presented as an alternative way 
of expressing Newton's second law of motion, 
although it will not be used in any of the 
Sample Problems in this text. The term inertia 
vector is used in preference to inertia force or 
reversed effective force to avoid any possible 
confusion with actual forces. 

In Sec. 12.7 the concept of angular momentum 
of a particle is introduced, and Newton's second 
law is used to show that the sum of the 
moments about a point O of the forces acting on 
a particle is equal to the rate of change of the 
angular momentum of the particle about O. 
Section 12.8 analyzes the motion of a particle in 
terms of radial and transverse components and 
Sec. 12.9 considers the particular case of the 
motion of a particle under a central force. The 
early introduction of the concept of angular 
momentum greatly facilitates the discussion of 
this motion. Section 12.10 presents Newton's 
law of gravitation and its application to the 
study of the motion of earth satellites. 
 
Sections 12.11 through 12.13 are optional. 
Section 12.11 derives the differential equation 
of the trajectory of a particle under a central 
force, while Sec. 12.12 discusses the 
trajectories of satellites and other space vehicles 
under the gravitational attraction of the earth. 
While the general equation of orbital motion is 
derived (Eq. 12.39), its application is restricted 
to launchings in which the velocity at burnout is 
parallel to the surface of the earth. (Oblique 
launchings are considered in Sec. 13.9.)  The 
periodic time is found directly from the 
fundamental definition of areal velocity rather 
than by formulas requiring a previous 
knowledge of the properties of conic sections. 
Instructors may omit Secs. 12.11 through 12.13 
and yet assign a number of interesting space 
mechanics problems to their students after they 
have reached Sec. 13.9.  
 
Chapter 13 
Kinetics of Particles: 

    Energy and Momentum Methods 
 
After a brief introduction designed to give to 
students some motivation for the study of this 
chapter, the concept of work of a force is 
introduced in Sec. 13.2. The term work is 
always used in connection with a well-defined 
force.   Three examples considered are the work 
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of a weight (i.e., the work of the force exerted 
by the earth on a given body), the work of the 
force exerted by a spring on a given body, and 
the work of a gravitational force.  Confusing 
statements, such as the work done on a body or 
the work done on a spring, are avoided. 
 
The concept of kinetic energy is introduced in 
Sec. 13.3 and the principle of work and energy 
is derived by integration of Newton's equation 
of motion. In applying the principle of work 
and energy, students should be encouraged to 
draw separate sketches representing the initial 
and final positions of the body (Sec. 13.4). 
Section 13.5 introduces the concepts of power 
and efficiency. 
 
Sections 13.6 through 13.8 are devoted to the 
concepts of conservative forces and potential 
energy and to the principle of conservation of 
energy. Potential energy should always be 
associated with a given conservative force 
acting on a body. By avoiding statements such 
as "the energy contained in a spring" a clearer 
presentation of the subject is obtained, which 
will not conflict with the more advanced 
concepts that students may encounter in later 
courses. In applying the principle of 
conservation of energy, students should again 
be encouraged to draw separate sketches 
representing the initial and final positions of the 
body considered. 
 
In Sec. 13.9, the principles of conservation of 
energy and conservation of angular momentum 
are applied jointly to the solution of problems 
involving conservative central forces.  A large 
number of problems of this type, dealing with 
the motion of satellites and other space 
vehicles, are available for homework 
assignment.  As noted earlier, these problems 
(except the last two, Probs. 13.117 and 13.118) 
can be solved even if Secs. 12.11 through 12.13 
have been omitted. 
 
The second part of Chap. 13 is devoted to the 
principle of impulse and momentum and to its 
application to the study of the motion of a 
particle. Section 13.10 introduces the concept of 

linear impulse and derives the principle of 
impulse and momentum from Newton's second 
law. The instructor should emphasize the fact 
that impulses and momenta are vector 
quantities. Students should be encouraged to 
draw three separate sketches when applying the 
principle of impulse and momentum and to 
show clearly the vectors representing the initial 
momentum, the impulses, and the final 
momentum. It is only after the concept of 
impulsive force has been presented that students 
will begin to appreciate the effectiveness of the 
method of impulse and momentum (Sec. 
13.11). 
 
Direct central impact and oblique central impact 
are studied in Sees. 13.12 through 13.14. Note 
that the coefficient of restitution is defined as 
the ratio of the impulses during the period of 
restitution and the period of deformation. This 
more basic approach will make it possible in 
Sec. 17.12 to extend the results obtained here 
for central impact to the case of eccentric 
impact. Emphasis should be placed on the fact 
that, except for perfectly elastic impact, energy 
is not conserved. Note that the discussion of 
oblique central impact in Sec. 13.14 has been 
expanded to cover the case when one or both of 
the colliding bodies are constrained in their 
motions. 
 
Section 13.15 shows how to select from the 
three fundamental methods studied in Chaps. 12 
and 13 the one best suited for the solution of a 
given problem.   It also shows how several 
methods can be combined to solve a given 
problem. Note that problems have been 
included (Probs. 13.176 through 13.189), which 
require the use of both the method of energy 
and the method of momentum in their solutions. 
 
 
Chapter 14 
Systems of Particles 
 
Chapter 14 is devoted to the study of the motion 
of systems of particles. Sections 14.2 and 14.3 
derive the fundamental equations (14.10) and     
(14.11) relating,  respectively,  the resultant and 
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the moment resultant of the external forces to 
the rate of change of the linear and angular 
momentum of a system of particles. Sections 
14.4 and 14.5 are devoted, respectively, to the 
motion of the mass center of a system and to 
the motion of the system about its mass center. 
Section 14.6 discusses the conditions under 
which the linear momentum and the angular 
momentum of a system of particles are 
conserved. Sections 14.7 and 14.8 deal with 
the application of the work-energy principle to 
a system of particles, and in Sec. 14.9 the 
application of the impulse-momentum 
principle is discussed. 

 

A number of challenging problems have been 
provided to illustrate the application of the 
principles discussed in Sees. 14.2 through 14.9. 
The first group of problems (Probs. 14.1 
through 14.30) deal chiefly with the 
conservation of the linear momentum of a 
system of particles and with the motion of the 
mass center of the system, while the second 
group of problems (Probs. 14.31 through 14.58) 
involve the combined use of the principles of 
conservation of energy, linear momentum, and 
angular momentum. However, the main 
purpose of these sections is to lay the proper 
foundation for the later study of the kinetics of 
rigid bodies (Chaps. 16 through 18). Depending 
upon the preparation and interest of the 
students, a greater or lesser emphasis may be 
placed on this part of the course.  It is essential, 
however, that the significance of Eqs. (14.16) 
and (14.23) be pointed out to students, in view 
of the role played by these equations in the 
study of the motion of rigid bodies. 
 

The instructor should note the distinction made 
in Sec. 14.2 between equivalent systems of 
forces (i.e., systems of forces which have the 
same effect) and equipollent systems of forces 
(i.e., systems of forces which have the same 
resultant and the same moment resultant). The 
equivalence of two systems of forces has been 
indicated in diagrams by red equals signs, and 
their equipollence by blue equals signs. 

 
Sections 14.10 through 14.12 are optional. They 
are devoted to the study of variable systems of 
particles, with applications to the determination 
of the forces exerted by deflected streams and 
the thrust of propellers, jet engines, and rockets. 
Since Newton's second law F = ma was stated 
for a particle with a constant mass and does not 
apply, in general, to a system with a variable 
mass (see footnote, page 890), the derivations 
given in Sec. 14.11 for a steady stream of 
particles and in Sec. 14.12 for a system gaining 
or losing mass are based on the consideration of 
an auxiliary system consisting of unchanging 
particles. This approach should give students a 
basic understanding of the subject and lead 
them unconfused to more advanced courses in 
mechanics of fluids. 
 
Chapter 15 
Kinematics of Rigid Bodies 
 
With this chapter we start the study of the 
dynamics of rigid bodies. After an introduction 
in which the fundamental types of plane motion 
are defined (Sec. 15.1), the relations defining 
the velocity and the acceleration of any given 
particle of a rigid body are established for two 
particular cases: translation (Sec. 15.2) and 
rotation about a fixed axis (Secs. 15.3 and 
15.4). 
 
In Sec. 15.5 it is shown that the most general 
plane motion can always be considered as the 
sum of a translation and a rotation. This 
property is established by considering the 
relative motion of two particles of the rigid 
body and is immediately applied in Sec. 15.6 to 
the determination of velocities. 
 
Section 15.7 introduces the concept of the 
instantaneous center of rotation. The instructor 
should stress the fact that, while the 
instantaneous-center method simplifies the 
solution of many problems involving velocities, 
it cannot be used to determine accelerations. 
 
In Sec. 15.8 the concept of relative motion is 
used again, this time to determine accelerations 
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in plane motion.  Students should be warned 
against any unwarranted assumptions 
concerning the direction of unknown 
accelerations. Section 15.9 is optional. It 
presents an analytical method for the 
determination of velocities and accelerations 
based on the use of a parameter. 
 
Section 15.10 discusses the rate of change of a 
vector with respect to a rotating frame, and Sec. 
15.11 applies the results obtained to the 
determination of Coriolis acceleration in plane 
motion. To make the concept of Coriolis 
acceleration as intuitive as possible, an example 
involving the motion of a collar on a rotating 
rod is given on page 975. It should be kept in 
mind, however, that Coriolis acceleration does 
not depend upon the existence of an actual slab 
or rod on which the particle moves.  It will 
appear whenever rotating axes are used. There 
lies the fundamental difference between the 
approach of Sec. 15.11 and that of Sees. 11.12 
and 15.8 where moving axes of fixed direction 
were used. 
 
The remaining sections of Chap. 15 are devoted 
to the kinematics of rigid bodies in three 
dimensions and are optional. However, they 
should be included in a course covering the 
kinetics of rigid bodies in three dimensions 
(Chap. 18) and should be taught either at this 
point or immediately before Chap. 18. 
 
In Sec. 15.12 the motion of a rigid body about a 
fixed point is presented.  Students should note 
that while the finite rotations of a rigid body 
have magnitude and direction, the rotations are 
not vectors (see also Sec. 2.3 and Fig. 2.3); on 
the other hand, both angular velocity and 
angular acceleration are vector quantities. In 
Sec. 15.13, the general motion of a rigid body 
is analyzed.  It should be emphasized that in 
this section the moving frame of reference is of 
fixed orientation and does not rotate. 
 
Sections 15.14 and 15.15 consider the motion 
of particles and rigid bodies with respect to 
rotating frames of reference and extend the  
 

concept of Coriolis acceleration to three-
dimensional motion. 
 
Chapter 16 
Plane Motion of Rigid Bodies: 

Forces and Accelerations 
 
This chapter is devoted to the plane motion of 
rigid bodies which consist of plane slabs or 
which are symmetrical with respect to the 
reference plane. Cases involving the plane 
motion of nonsymmetrical bodies and, more 
generally, the motion of rigid bodies in three 
dimensions are considered in Chap. 18. If the 
determination of mass moments of inertia has 
not been covered in the previous statics course, 
the instructor should include material from 
Secs. 9.11 through 9.15 of Appendix B (or 
from the second part of Chap. 9) at this point.  
 
In Sec. 16.2 the fundamental relations derived 
in Chap. 14 for a system of particles are used to 
show that the external forces acting on a rigid 
body are equipollent to the vector ma attached 
at the mass center G of the body and the couple 
of moment GH . This result, which is illustrated 
in Fig. 16.3, is valid in the most general case of 
motion of a rigid body (three-dimensional as 
well as plane motion). 
 
It is shown in Sec. 16.3 that in the case of the 
plane motion of a slab or symmetrical body, the 
angular momentum GH  reduces to Iω  and its 

rate of change to Iα .  Section 16.4 is devoted 
to D'Alembert's principle.  It is shown that the 
external forces acting on a rigid body are 
actually equivalent to the effective forces 
represented by the vector ma  and the 
couple Iα . As noted in Sec. 16.5, this result is 
obtained independently of the principle of 
transmissibility (Sec. 3.18) and can be used to 
derive this principle from the other axioms of 
mechanics. 
 
At this point students will have reached the 
climax of their study of rigid-body motion in 
two  dimensions.   Indeed,  they  can  solve  any 
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problem by drawing two sketches — one 
showing the external forces, the other the vector 
ma and the couple Iα  — and then expressing 
that the two systems of vectors shown are 
equivalent. To avoid drawing two separate 
sketches, the method of dynamic equilibrium 
can be used, with a single sketch showing the 
external forces, the inertia vector -ma  and the 
inertia couple - Iα  (Sec. 16.6).  However, to 
facilitate the transition to the study of three-
dimensional motion (Chap. 18), the two-sketch 
method showing separately the external forces 
and the effective forces will be used in all 
sample problems. 
 
The various types of plane-motion problems 
have been grouped according to their kinematic 
characteristics. Translation, centroidal rotation, 
and plane motion consisting of a translation and 
an unrelated centroidal rotation are considered 
first, since they are the simplest ones to analyze. 
They are followed by plane motions with 
various kinematic constraints: non-centroidal 
rotation, rolling motion, and other types of 
plane motion.  Problems involving systems of 
rigid bodies have been included at the end of 
this chapter, with either one degree of freedom 
(Probs. 16.126 through 16.134) or two degrees 
of freedom (Probs. 16.135 through 16.141). The 
instructor should stress the fact that, in spite of 
the different kinematic characteristics of these 
various motions, the approach to the kinetics of 
the motion is consistently the same: all 
problems are solved by drawing two sketches 
— one showing the external forces, the other 
the vector ma  and the couple Iα  — and then 
expressing that the two systems of vectors are 
equivalent. 
 
Since the approach used in this text differs from 
others in the emphasis placed on the direct 
application of D'Alembert's principle, rather 
than on specialized formulas, it might be 
appropriate at this point to summarize the 
advantages derived from this approach. 
 
     (1) A single method is used, which applies to 
all cases of plane motion, regardless of their 

kinematic characteristics, and which can be 
used safely under any conditions. This is in 
contrast to using the equation M IαΣ = , which 
is limited in its applications, as is pointed out in 
Prob. 16.93. 
 
     (2) By stressing the use of the free-body 
diagram, this method provides a better 
understanding of the kinetics of the motion. 
There will be little danger, for example, in the 
solution of a problem of non-centroidal 
rotation, that students will forget the effect of 
the acceleration of the mass center on the 
reaction at the fixed point, a mistake which 
occurs frequently when the specialized formula 

O OM I αΣ =  is used. 
 
     (3) The method used divides the solution of 
a problem into two main parts, one in which the 
kinematic and kinetic characteristics of the 
problem are considered (separately if 
necessary), and the other in which the methods 
of statics are used. In this way the techniques of 
each separate field can be used most efficiently. 
For example, moment equations can be written 
to eliminate unwanted reactions, just as it was 
done in statics; this can be done independently 
of the kinetic characteristics of the problem. 
 
     (4) By resolving every plane motion (even a 
non-centroidal rotation) into a translation and a 
centroidal rotation, a unified approach is 
obtained, which will also be used in Chap. 17 
with the method of work and energy and with 
the method of impulse and momentum, and 
which will be extended in Chap. 18 to the study 
of the three-dimensional motion of a rigid body. 
This approach is a basic one, which can be 
applied effectively throughout the study of 
mechanics in advanced courses as well as in 
elementary ones. 
 
Chapter 17 
Plane Motion of Rigid Bodies: 

Energy and Momentum Methods 
 
The first portion of the chapter extends the 
method  of  work  and  energy,  already  used in 
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Chap. 13, to the study of the plane motion of 
rigid bodies. The expressions for the work of a 
couple and for the kinetic energy of a rigid 
body are derived in Secs. 17.3 and 17.4. Using 
the results obtained in Sec. 14.7, the kinetic 
energy of a rigid body is separated into a 
translational part and a rotational part (about the 
mass center). The authors believe that, while it 
may lead to slightly longer solutions, this 
method is more fundamental and should be 
used in preference to special formulas. Indeed, 
it  follows  the  basic  idea  of  resolving  every 
plane motion into a translation and a centroidal 
rotation. 
 
It is shown in Sec. 17.5 that the method of work 
and energy is especially effective in the case of 
systems of rigid bodies connected by pins, 
inextensible cords, and meshed gears.  In Sec. 
17.6 the principle of conservation of energy is 
used to analyze the plane motion of rigid 
bodies. 
 
In the second part of Chap. 17, the method of 
impulse and momentum is extended to the 
study of the motion of rigid bodies. The 
approach used is different from that of most 
elementary textbooks. Ready-to-use formulas 
are avoided; instead, students are taught to 
express the general principle of impulse and 
momentum by means of free-body diagrams 
and to write the equations most appropriate to 
the solution of the problem considered. 
 
The results obtained in Sec. 14.9 for a system of 
particles are directly applicable to the system of 
particles forming a rigid body and can be used 
to analyze the plane motion of rigid bodies.  It 
is shown in Sec. 17.8 that the momenta of the 
various particles forming a rigid body reduce to 
a vector mv  and a couple Iω  in the most 
general case of plane motion.  
 
While the principle of conservation of angular 
momentum is discussed in Sec. 17.10 because 
of its physical and historical significance, it is 
not actually used in the solution of problems. 
To solve any problem, regardless of the type of 

motion, and whether it involves constant forces 
of finite magnitude applied for a finite time or 
impulsive forces applied for a very short time 
interval, students are told to draw three separate 
sketches showing, respectively, the initial 
momenta, the impulses of the external forces, 
and the final momenta. The momenta of a rigid 
body are represented in the most general case 
by a momentum vector mv  attached at the mass 
center and a momentum couple Iω . If students 
then consider the components of the vectors 
involved, they obtain relations between linear 
impulses and linear momenta. If they consider 
the moments of the same vectors, they obtain 
angular impulses and angular momenta.  If, by 
equating moments about a point such as a pivot, 
they obtain an equation which does not involve 
any of the external forces, they will have 
automatically established conservation of 
angular momentum about that point. 
 
The advantages derived from this approach can 
be summarized as follows: 
 
     (1) Students learn only one method of 
solution,  a  method  based  directly  on  a 
fundamental principle and which can be used 
safely under any conditions. This is in contrast 
with the equation 2 1( )M I ω ωΣ = − , which is 
limited in its applications (see Prob. 17.58). 
 
     (2) The method stresses the use of free-body 
diagrams and thus provides a better 
understanding of the kinetics of the motion.  It 
is unlikely, for  example,  that  students  will 
forget an impulsive reaction at a fixed support. 
 
     (3) Students use the basic tools they learned 
in statics: reduction of a system of vectors to a 
vector and a couple and equations relating the 
components or the moments of these vectors. 
 
     (4) Again, the same unified approach is 
used: every plane motion is resolved into a 
translation and a centroidal rotation.  In Chap. 
18 this approach will be extended to the 
solution of problems involving the three-
dimensional motion of rigid bodies. 
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Some teachers may fear that the inclusion of 
momentum vectors and momentum couples in 
the same diagrams may lead to confusion. This 
will not be the case, however, if students are 
instructed to write separate equations involving 
either components or moments, as they did in 
statics. The first equations will contain linear 
impulses and linear momenta expressed in N•s 
or lb•s, and the latter angular impulses and 
angular momenta expressed in N•m•s or lb•ft•s. 
 
Section 17.12 is devoted to the eccentric 
impact of two rigid bodies, a topic seldom 
included in an elementary text. No special 
difficulty will be encountered, however, if 
separate sketches are used as indicated above. 
 
Chapter 18 
Kinetics of Rigid Bodies in Three 
Dimensions 
 
In this chapter, the restrictions imposed in 
preceding chapters (e.g., plane motion, 
symmetrical bodies) are lifted and students 
proceed to the analysis of more general (and 
more difficult) problems, such as the rotation 
of nonsymmetrical bodies about fixed axes and 
the motion of gyroscopes. 
 
In Sec. 18.1, the general result obtained in Sec. 
16.2 is recalled, namely, that the external 
forces acting on a rigid body are equipollent to 
the vector ma  attached at the mass center G of 
the body and the couple of moment GH . It is 
also pointed out that the main feature of the 
impulse-momentum method, namely, the 
reduction of the momenta of the particles of a 
rigid body to a linear momentum vector 
mv attached at G and an angular momentum, 
remains valid and that the work-energy 
principle and the principle of conservation of 
energy still apply in the case of the motion of a 
rigid body in three dimensions. The difficulties 
encountered in the study of the three 
dimensional motion of a rigid body are related 
to the determination of the angular 
momentum GH , of its rate of change GH , and 
of the kinetic energy of the body. 

The determination of the angular momentum 
GH  of a rigid body from its angular velocity 

ω  is discussed in Sec. 18.2.  Since this 
requires the use of mass products of inertia, as 
well as the use of mass moments of inertia, the 
instructor should cover Secs. 9.16 and 9.17 
from Appendix B (or from the second part of 
Chap. 9) if this material has not been included 
in the previous statics course. 
 
Section 18.3 is devoted to the application of the 
impulse-momentum principle to the three-
dimensional motion of a rigid body, and Sec. 
18.4 to the determination of its kinetic energy. 
 
In Secs. 18.5 and 18.6, the rate of change of the 
angular momentum GH  is computed and the 
equations of motion for a rigid body in three 
dimensions are derived. D'Alembert's principle 
is extended to the case of three-dimensional 
motion by showing that the external forces are 
actually equivalent to the effective forces 
represented by the vector ma  and the 
couple GH . Sections 18.7 and 18.8 are devoted 
to the particular cases of the motion of a rigid 
body about a fixed point and the rotation of a 
rigid body about a fixed axis, with applications 
to the balancing of rotating shafts. 
 
While Euler's equations of motion have been 
derived on page 1166, it should be noted that 
the more fundamental vector relations 
represented by Equations (18.22), (18.23), and 
(18.28) are used in the solution of problems. 
 
The remaining portion of this chapter (Secs. 
18.9 through 18.11) is designed for advanced 
students and, in general, should be omitted for 
ordinary classes.  In Secs. 18.9 and 18.10 the 
motion of a gyroscope is considered.  At this 
point Eulerian angles are introduced.  It should 
be carefully noted that the rotating system of 
axes Oxyz is attached to the inner gimbal; these 
axes are principal axes of inertia and they 
follow the precession and nutation of the 
gyroscope; they do not, however, spin with the 
gyroscope.     The    special    case    of    steady 
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precession is considered in Sec. 18.10. Several 
problems dealing with the steady precession of 
a top and other axisymmetrical bodies have 
been included and, in one of them (Prob. 
18.110), it is shown that the formula usually 
given in introductory texts is only approximate. 
Two problems dealing with the general motion 
of a top have also been included (Probs. 18.135 
and 18.136). Instructors may wish to call to the 
attention of their more advanced students the 
effects of different types of constraints on the 
motion of similar disks (Probs. 18.133, 18.134, 
18.139, and 18.140). 
 
The motion of an axisymmetrical body under 
no force (Sec. 18.11) introduces students to one 
of the most interesting aspects of classical 
dynamics — an aspect which has gained 
widespread attention in recent years due to the 
interest in space vehicles and artificial satellites. 
In this connection, it should be pointed out that 
Poinsot's theory of the motion of a 
nonsymmetrical body under no force may be 
covered by assigning Probs. 18.141 through 
18.143.  An additional problem (Prob. 18.144) 
relates to the stability of the rotation of a 
nonsymmetrical body about a principal axis. 
 
Chapter 19 
Mechanical Vibrations 
 
This chapter provides an introduction to the 
study of mechanical vibrations. While only one-
degree-of-freedom systems are included, all the 
basic principles are presented. The various 
topics covered are as follows: 
 
     (a) Free, undamped vibrations of a particle 
(Sec. 19.2). The differential equation 
characterizing simple harmonic motion is 
derived and all basic terms, such as period, 
natural frequency, and amplitude, are defined. 
Both the analytical and the geometrical methods 
of solution are described.  It is shown in  Sec. 
19.3  that  the motion of a simplependulum  can  
 
 

 
 
be approximated by a simple harmonic motion. 
Section 19.4, which is optional, shows how an 
exact solution can be obtained for the period of 
oscillations of a simple pendulum. 
 
     (b) Free, undamped vibrations of a rigid 
body.   The principle of equivalence of the 
systems of applied and effective forces is first 
used to determine the natural frequency and the 
period of oscillations of a rigid body (Sec. 
19.5). Note that the same positive sense is 
assumed for the angular acceleration and 
displacement; this results in an apparently 
unrealistic assumption for the sense of the 
vector ma  and the couple Iα . The principle of 
conservation of energy is then used to solve the 
same type of problems (Sec. 19.6). 
 
     (c)  Forced,  undamped  vibrations  of  a 
particle  (Sec. 19.7).  This section introduces 
students to the concepts of forced frequency, 
transient and steady-state vibrations, and 
resonance. While all students will be able to 
understand this section, those with a knowledge 
of elementary differential equations will derive 
a greater benefit from it since it provides a 
direct application of the solution of linear 
nonhomogeneous equations with constant 
coefficients. 
 
     (d)  Free, damped vibrations of a particle 
(Sec. 19.8), and 
 
     (e)  Forced, damped vibrations of a particle 
(Sec.  19.9).   These two sections take into 
account the effect of friction and thus provide a 
more rigorous analysis of the vibrations of a 
particle. They are not recommended, however, 
to students who do not possess a basic 
knowledge of elementary differential equations. 
 
In Sec. 19.10 the electrical analogue for a 
vibrating mechanical system is discussed; this 
section is optional and should not be assigned 
unless Secs. 19.8 and 19.9 have been covered. 
 


